Unit 4 – Lesson 11	Name:	
Constant Rates	Date:	Period:

Focus Standard:8.EE.B.5Graph proportional relationships, interpreting the unit rate as the
slope of the graph. Compare two different proportional
relationships represented in different ways. For example,
compare a distance-time graph to a distance-time equation to
determine which of two moving objects has greater speed.

Student Outcomes

- Students know the definition of constant rate in varied contexts as expressed using two variables where one is *t* representing a time interval.
- Students graph points on a coordinate plane related to constant rate problems.

Example 1

Pauline mows a lawn at a constant rate. Suppose she mows a **35** square foot lawn in **2.5** minutes. What area, in square feet, can she mow in **10** minutes? *t* minutes?

<i>t</i> (time in minutes)	Linear equation:	y (area in square feet)

Example 2

Water flows at a constant rate out of a faucet. Suppose the volume of water that comes out in three minutes is **10.5** gallons. How many gallons of water comes out of the faucet in *t* minutes?

t (time in minutes)	Linear equation:	
0		
1		
2		
3		
4		

Exercises

- 1. Juan types at a constant rate. He can type a full page of text in $3\frac{1}{2}$ minutes. We want to know how many pages, *p*, Juan can type after *t* minutes.
 - a. Write the linear equation in two variables that represents the number of pages Juan types in any given time interval.
 - b. Complete the table below. Use a calculator and round your answers to the tenths place.

t (time in minutes)	Linear equation:	p (pages typed)
0		
5		
10		
15		
20		

c. Graph the data on a coordinate plane.

d. About how long would it take Juan to type a 5-page paper? Explain.

- 2. Emily paints at a constant rate. She can paint 32 square feet in 5 minutes. What area, *A*, in square feet, can she paint in *t* minutes?
 - a. Write the linear equation in two variables that represents the number of square feet Emily can paint in any given time interval.

- t (time in
minutes)Linear equation:A (area painted
in square feet)0010203040
- b. Complete the table below. Use a calculator and round answers to the tenths place.

c. Graph the data on a coordinate plane.

d. About how many square feet can Emily paint in $2\frac{1}{2}$ minutes? Explain.

- 3. Joseph walks at a constant speed. He walked to a store that is one-half mile away in 6 minutes. How many miles, m, can be walk in t minutes?
 - a. Write the linear equation in two variables that represents the number of miles Joseph can walk in any given time interval, *t*.
 - b. Complete the table below. Use a calculator and round answers to the tenths place.

<i>t</i> (time in minutes)	Linear equation:	<i>m</i> (distance in miles)
0		
30		
60		
90		
120		

c. Graph the data on a coordinate plane.

d. Joseph's friend lives 4 miles away from him. About how long would it take Joseph to walk to his friend's house? Explain.

Problem Set

- 1. A train travels at a constant rate of 45 miles per hour.
 - a. What is the distance, *d*, in miles, that the train travels in *t* hours?
 - b. How many miles will it travel in 2.5 hours?
- 2. Water is leaking from a faucet at a constant rate of $\frac{1}{2}$ gallons per minute.
 - a. What is the amount of water, *w*, in gallons per minute, that is leaked from the faucet after *t* minutes?
 - b. How much water is leaked after an hour?
- 3. A car can be assembled on an assembly line in 6 hours. Assume that the cars are assembled at a constant rate.
 - a. How many cars, y, can be assembled in t hours?
 - b. How many cars can be assembled in a week?

- 4. A copy machine makes copies at a constant rate. The machine can make 80 copies in $2\frac{1}{2}$ minutes.
 - a. Write an equation to represent the number of copies, *n*, that can be made over any time interval, *t*.
 - b. Complete the table below.

<i>t</i> (time in minutes)	Linear equation:	n (number of copies)
0		
0.25		
0.5		
0.75		
1		

c. Graph the data on a coordinate plane.

d. The copy machine runs for 20 seconds, then jams. About how many copies were made before the jam occurred? Explain.

5. Connor runs at a constant rate. It takes him 34 minutes to run 4 miles.

a. Write the linear equation in two variables that represents the number of miles Connor can run in any given time interval, *t*.

<i>t</i> (time in minutes)	Linear equation:	<i>m</i> (distance in miles)
0		
15		
30		
45		
60		

b. Complete the table below. Use a calculator and round answers to the tenths place.

c. Graph the data on a coordinate plane.

d. Connor ran for 40 minutes before tripping and spraining his ankle. About how many miles did he run before he had to stop? Explain.